
THE COMPUTER ALWAYS WINS

15544_000.indd 1 12/18/2024 4:14:25 PM

WHY ALGORITHMS?

If you are reading this book, you are almost certainly an unbeatable player
at the classic game tic- tac- toe. Against an unsophisticated opponent, you
win every time. Against a capable opponent, you might not win but you
probably never lose. And you do all of this . . . how? What rules do you
intuitively use to place each X or position each O?

To teach a computer to play, you would probably start by telling the
computer to place its mark in any row, column, or diagonal where it already
has two marks. That is, if the computer is in position to win on the next
move, you would tell the computer to do so. Next, you would tell the com-
puter to place its mark in any row, column, or diagonal where its opponent
already controls two spaces. That is, if an opponent is in position to win on
the next move, you would tell the computer to block. From there, there are
a handful of plausible options, but perhaps you would tell the computer
to place its mark in any row, column, or diagonal where it already has one
mark and the other two spaces are empty. And you might tell the computer
to, as a general rule, favor the center over the corners and the corners over
any other open spaces.

If you did this, the truth is that your computer would play the game rea-
sonably well. In fact, there are 2,097 theoretically possible tic- tac- toe game-
boards, and these four simple rules will reliably identify the right move on
1,995 of them. No need for anything fancy. The computer can pick the best
move in 95 percent of cases simply by adopting the strategy of winning if it

15544_000c.indd 11 12/18/2024 4:14:26 PM

xii WHY ALGORITHMS?

can, blocking if it needs to, creating two- in- a- row combinations where the
third space is blank, and, as a general default, favoring the center over the
corners and the corners over any other space.

Teach your computer to play tic- tac- toe this way, however, and the com-
puter will lose every game. Why? Because a good human player will exploit
the 102 situations where this haphazard approach fails. At that point, no
one will celebrate the fact that your computer would have done just fine in
any of 1,995 other situations. It will matter only that your code has a blind
spot, and your opponents can use that blind spot against you.

This leads to two important implications. First, the fact that intuitive
rules fail for even simple games is the launching point for this book. The
problem is that rules are like patches: they cover a specific situation, much
like a simple patch can be used to cover a specific hole, but covering a large
area by rule or patch will almost always leave accidental gaps. An effective
computer algorithm must therefore be more like a blanket, covering the full
range of possible situations, including those that are rare, hard to foresee, or
just plain hard to articulate.

Second, simple rules, like patches, are nevertheless extremely valuable.
In tic- tac- toe, for example, there is no better move than one that creates
three in a row. So whenever that move is an option, a well- written com-
puter program should cut short any more complicated algorithm and tri-
umphantly take the win.

Intuitive rules, then, will serve an important role as we train the com-
puter to play a wide variety of everyday games. But if the computer is to
have any hope of winning against capable players, we will need something
more. Exploring that something more is this book’s exciting mission.

15544_000c.indd 12 12/18/2024 4:14:26 PM

CHAPTER SUMMARIES

1 GUESS WRONG ANSWERS

You are playing Wordle, and you know that the hidden word ends with the
letters a- b- l- e. Is table the best next guess? Cable? Sable? Fable? A well- trained
computer will tell you not to guess any of these but instead to guess the
seemingly nonsense word scarf. This chapter explains why, unpacking one
of the best algorithms to use when your goal is to find the needle in some
proverbial haystack.

2 THE ROAD NOT TAKEN

A foolproof way to escape a maze is to comprehensively test every path,
keeping track of where you are and where you’ve been. You walk down a
path, make note of every available option, and then continue forward until
you either escape or hit a dead end. If you do hit a dead end, no problem;
because you have kept track of all the remaining options, you can retrace
your steps and try one of those. As it turns out, this is a promising approach
for more than just mazes. If you are playing sudoku, for instance, there
might be several numbers that could plausibly be placed in a given square.
How to pick? Choose one tentatively, see if you can from there fill in the
rest of the grid without hitting a dead end, and then retrace your steps if
the original choice doesn’t work. This chapter formalizes this wandering
approach and then marvels at the countless puzzles it can effectively solve.

3 ONE STEP AT A TIME

If your car’s navigation system applied the approach introduced in the pre-
vious chapter, you would from time to time be sent on a ridiculous journey.
Your car would be parked in (say) Los Angeles, California; you would ask
for directions to a nearby restaurant; and the computer would correctly tell

15544_000d.indd 13 12/18/2024 4:14:27 PM

xiv CHAPTER SUMMARIES

you that one workable path would be to drive from California to Alaska, to
Texas, to Ohio, and then back to that Los Angeles restaurant. Admittedly,
you would ultimately arrive, but you would be hungry. This chapter there-
fore considers a competing algorithm that does not simply promise to find
a winning path, but more powerfully promises to find the shortest one.

4 WHOSE TURN IS IT ANYWAY?

When you play any two- player game, you presumably pick your move
based on what you think will happen in the moves to follow. In chess,
for instance, as you think about moving your left- most pawn, you prob-
ably think ahead to what your opponent will do in response to that move,
what you will do in response to your opponent’s response, and so on,
perhaps several moves deep. Computers can play games using this exact
approach but with a huge advantage: while a human player will typically be
exhausted after thinking just a few moves ahead, a computer can theoreti-
cally consider every possible future move.

5 MOVE FASTER

The prior chapter considers strategies where the computer picks its move
by literally playing out every possible future response. That turns out to
be a wildly effective but frustratingly slow approach. To exhaustively play
out a game of tic- tac- toe, for example, the computer would need to test
something on the order of half a million game interactions just to make its
first move. Do the same thing for Connect Four and the computer is stuck
evaluating untold trillions. And chess? Forget about it. This chapter takes
a first step toward addressing this problem by limiting the extent to which
the computer looks ahead. The computer might look two or three moves
ahead, but in this chapter the computer is no longer allowed to play every
possible game to its definitive conclusion.

6 PRUNING THE TREE

We can do even better, however. Our best algorithm so far still wastes a lot
of time considering completely implausible moves. For instance, even if the
computer realizes that its opponent will win the game unless the computer
blocks a particular spot, our current algorithm records that information but
then continues to consider other options. A human player would do noth-
ing of the sort. Once a human player finds what looks to be the best move,

15544_000d.indd 14 12/18/2024 4:14:27 PM

CHAPTER SUMMARIES xv

the human player makes it. This chapter looks at strategies that empower
the computer to similarly cut wasteful analysis, saving time for more dif-
ficult choices.

7 THROWING DARTS

When researchers are evaluating the efficacy of a medication, they don’t
test the drug on every patient. Instead, they test a few patients, then gen-
eralize the results to fit the population. Computers, it turns out, can do
something very similar. For instance, instead of analyzing two potential
moves rigorously, a computer can randomly simulate fifty games using the
first option, randomly simulate fifty more games using the second option,
and then pick the move with the better average performance. The power
of this technique might surprise you, in that it can be both remarkably fast
and surprisingly accurate.

8 AIMING DARTS

The prior chapter demonstrates the power of random sampling. This chap-
ter takes the next step, shifting from random sampling to strategic sampling.
For instance, if after fifty random simulations it is clear that one move is
terrible while three others are plausible, a purely random approach would
continue to explore all four options. A better strategy, however, would take
those results and adjust, focusing all remaining simulations on the three
still- plausible moves while ignoring the move that is pretty clearly a dud.

9 AIMING DARTS AT OTHERS

Let’s not hurt anyone here, folks. But the two previous chapters apply ran-
dom strategies to what are, in essence, one- player games. Here, we upgrade
the algorithm so that it can be used to simulate two- player interactions. The
chapter ends with a popcorn- worthy showdown: the two- player algorithms
from chapters 4, 5, and 6 pitted against the two- player algorithms devel-
oped in chapters 7, 8, and 9.

10 ROCK, PAPER . . . PAPER

Random? Please. When playing rock- paper- scissors, you might try to make
your choices randomly, but odds are you suffer from some idiosyncratic
hiccup that throws off your game. Maybe you are reluctant to play scissors
twice in a row, even though a purely random player would do exactly that

15544_000d.indd 15 12/18/2024 4:14:27 PM

xvi CHAPTER SUMMARIES

surprisingly often. Maybe you subconsciously favor rock, or you absent-
mindedly change your choice after a loss but keep it the same after a win.
Because of this, rock- paper- scissors isn’t really a game of random chance;
it’s a game of random chance plus pattern recognition. And who, dare I ask,
is the king of pattern recognition? Yes, you guessed it: your computer.

11 BLACK BOXES

In every chapter thus far, I have been explicit about exactly what the com-
puter is doing and why it works. At the cutting edge of computer science,
however, are black-box strategies where these details are almost completely
hidden from view. The programmer provides training data, which in our
case will be some large number of already- played sample games. And the
programmer builds flexible data structures and supportive functions that
empower the computer to test different strategies against the data. But from
there the computer finds its own way, learning from the past to create its
own strategic future.

12 MINIMIZING REGRET

People learn by interacting with their environment. Toddlers, for instance,
figure out the details of walking not by listening to detailed instructions
from their caregivers but by paying attention to their own bumps and
bruises. Computers, too, can learn as they go. Thus, this chapter concludes
our work by exploring one such learning algorithm: the computer plays
the game, looks back to see where it might have made a better move, and
quantifies that regret in order to gradually develop an even more promising
solution strategy.

15544_000d.indd 16 12/18/2024 4:14:27 PM

SEARCHING AND SORTING

15544_001a.indd 1 12/18/2024 4:14:27 PM

15544_001a.indd 2 12/18/2024 4:14:27 PM

1
GUESS WRONG ANSWERS

U

R

G S S
W

G
R N
I

E
O G

H T

I am thinking of a number from 1 to 10. I chose my number randomly, and
when you guess I will honestly tell you whether your guess is spot- on, too
high, or too low. What should your first guess be?

Because I chose my number randomly, you might think that any first
guess is equally good. If you guess the number 2, for example, you have a
1- in- 10 chance of being correct. If you guess the number 9, you again have
a 1- in- 10 chance of being correct. Indeed, as long as you guess a number
between 1 and 10, you might think that any guess is just about the same.

But no.
Because I will also be telling you whether your guess is too high or too

low, different guesses have very different implications. Take an extreme:
Suppose you guess the number 1. Make that guess, and you have a 1- in- 10
chance of winning the game and a 9- in- 10 chance of being left to choose
from among nine numbers, all of which are greater than 1. Compare that
with a guess of 7. You would still have a 1- in- 10 chance of being right, but
now you would also have a 6- in- 10 chance of being told that your guess
is too high, and a 3- in- 10 chance of being told that your guess is too low.

Either way, you would learn a ton of information about the right answer.
If your guess turns out to be too high, you can suddenly eliminate from
contention the numbers 7, 8, 9, and 10. Too low, and (even better) you
can eliminate seven numbers, namely 1, 2, 3, 4, 5, 6, and 7. A guess of

15544_001b.indd 3 12/18/2024 4:14:28 PM

4 CHAPTER 1

the number 7 is thus tre-
mendously helpful even if
it turns out to be wrong, in

that it serves to eliminate a huge number of incorrect answers, making your
next guess that much more likely to be right.

And 7 is not even the optimal pick. As noted above, by guessing the
number 7, you give yourself a 6- in- 10 chance of cutting the list down to six
numbers and a 3- in- 10 chance of cutting the list down to three. An incor-
rect guess of 7 thus leaves you to choose from 4.5 numbers on average. You
can do even better, however, by guessing either of the two numbers in the
middle of the range, namely the numbers 5 or 6. Try 5, for instance. Once
more, you would have a 1- in- 10 chance of being right, but this time you
would have a 4- in- 10 chance of being too high and a 5- in- 10 chance of
being too low. The first of those possibilities would eliminate six numbers
and leave you with four. The second of those possibilities would eliminate
five numbers and leave you
with five. Adding and mul-
tiplying as appropriate, an
incorrect guess of 5 would
leave you with just 4.1 options on average, an outcome significantly better
than the 4.5 associated with an incorrect guess of 7. Guessing 6 is then an
equally good option, for essentially the same reasons.

We can think of algorithms like this as elimination algorithms, where the
key insight is that these strategies focus not solely on picking right answers
but also on quickly eliminating wrong ones. And elimination is way more
powerful than you think. Play our guessing game using the numbers 1
through 1,024, for example, and an algorithm that always picks the middle
number guarantees you a win after no more than ten guesses. Play the game
using numbers up to 1,000,000, and pick- the- middle guarantees you a win
within twenty tries. The underlying math in these examples is just division.
Every time you pick the middle number, either you win or you eliminate
half the remaining options.

1,024 512 256 128 64 32 16 8 4 2 1
Players using a guess- the- middle strategy cut the list of numbers in half
every move. Starting with 1,024 numbers, then, a player’s worst- case sce-
nario is to have 512 numbers left after the first guess, 256 left after the
second guess, and just 1 left after the tenth guess.

1 3 4 52 6 87 9 10

1 3 4 52 6 87 9 10

15544_001b.indd 4 12/18/2024 4:14:28 PM

GUESS WRONG ANSWERS 5

If you are with me thus far, you are probably beginning to realize that
one of the games you played as a kid was a lot more interesting than you
appreciated at the time. The game I have in mind: Guess Who?

Here’s how the game works. You are given a gameboard with some num-
ber of cartoon faces and your opponent chooses one of them as their secret
character. Your opponent is also given a gameboard with some number of
cartoon faces, and you, too, choose one to be your secret character. From
there, the two of you take turns asking each other yes/no questions, racing
to be first to identify the other person’s mystery pick. I had the superhero
version of the game, so as a kid I would ask questions like “Does your secret
hero wear a cape?” or “Can you see your secret hero’s hair?”

What’s interesting is that, as a kid, I always asked straightforward
questions like the examples given above, and I was pleased whenever an
affirmative answer would eliminate, say, four or five heroes. But we just
saw that dividing by two is the fastest way to whittle down a list, which
means I should have been asking questions designed to create two equal-
sized groups every time. How? One effective approach would have been to
sharpen my questions using words like and and or.

Against the sample board shown below, for instance, a great open-
ing question would be to ask whether the secret hero has either a cape or
goggles, since half the characters satisfy that constraint but half do not. A
positive response might best be followed by another compound question,
maybe asking whether the secret hero has both a helmet and goggles.

For the sample gameboard on the left, a question about “capes or gog-
gles” eliminates half the faces. From there, a follow- up about “helmets
and goggles” would again divide the number of remaining faces by two.

15544_001b.indd 5 12/18/2024 4:14:29 PM

6 CHAPTER 1

The games we have considered thus far have all been games in which
it was relatively easy to implement elimination. In guess- a- number, for
instance, we had to keep track of an ordered list of numbers, and we had to
find the middle number in that list. In Guess Who, we had to keep track of
which cartoon characters remained in contention and also notice relevant
characteristics that could differentiate the various characters. But elimina-
tion algorithms sometimes require so much recordkeeping that no human
player can possibly track all the data, let alone identify the optimal move.
It is in those instances that computers can meaningfully outperform their
human counterparts.

Consider the game Wordle in this light. A five- letter word is chosen at
random and hidden from the player. The player then attempts to guess the
hidden word but with one important constraint: every guess must itself be
a real five- letter word. After each guess, the player is given feedback about
the letters they chose. If a letter in the guess is highlighted green, that let-
ter is not only found in the hidden word but also found at exactly the same
position in that word as it is in the guessed word. If a letter is highlighted
yellow, the letter is in the hidden word but at some other spot. Lastly, if a
letter is neither green nor yellow, the letter is not part of the hidden word
at all.

YOUR MOVE

Suppose you are playing this divide- by- two
strategy against a player who asks conventional
questions, and that player gets lucky: they ask a
ridiculously lopsided question like “Does your
secret hero have horns?” at a time when the
hidden hero does, in fact, sport two giant pro-
trusions. What should you do next? Should you
stick with your clever and/or approach? Should
you instead try your own lopsided question in
the hope of catching up? And does this mean that sophisticated strat-
egies work better against sophisticated players than they do against
unsophisticated players?

15544_001b.indd 6 12/18/2024 4:14:29 PM

GUESS WRONG ANSWERS 7

Three sample games are shown below. For instance, in the first game
on the left, my opening guess was the word teach. I earned a close- but-
not- quite reaction for the letter e and a full- throated endorsement for my
placement of the letter a, so I knew that the hidden word uses the letter e,
has an a in the middle, and does not use the letters t, c, or h. That led to my
second guess, the word glare, which turns out to correctly place both the e
and the a and then also reveal, thanks to the new shaded square, that the
hidden word has an r in either the first or second position. My third guess
of brake was then very helpful; it taught me that the first letter of the hid-
den word is b and that r is in fact the second letter. From there, there was
only one plausible option left to guess, so I chose brave and won the game
in that fourth move.

T

B

E C H
G A R

R A K
L A

A
E

T

A

A E T

V

R I

L B
A

S

YM
D O

O R

O

G

A T
PS R

AE R
E
SE

O
O RA

F

RS
A

R
A M EG SB R A EV

In the first and third games, I was able to guess the hidden word on my
fourth try. In the second game, I came close but needed a fifth guess to
finally get there.

One intuitive way to play Wordle is to focus early guesses on letters that
tend to show up frequently in five- letter words. Using this approach, a
player might open the game by guessing the word raise because the letters
r, a, i, s, and e each commonly appear in real five- letter English words. A
more sophisticated approach might consider letter position, too, perhaps
picking a word like raves because the letters a and s are not only commonly
used in five- letter words but also frequently appear in the second and final
positions, respectively. A player adopting this approach would then piece
together the hidden word letter by letter. For instance, if an opening guess
of beast gave favorable information about the placement of the letter e and
the inclusion of the letter t, the player might try, as their next guess, a word
like tempo or fetch, two words that keep the e in the second spot and have a
t somewhere other than the second and fifth positions.

15544_001b.indd 7 12/18/2024 4:14:29 PM

8 CHAPTER 1

But now try an elimination approach. The New York Times publishes new
Wordle puzzles every day, choosing hidden words from a database of 2,315
five- letter options. In an elimination strategy, the goal would be to elimi-
nate some substantial number of those 2,315 words in the first guess. For
example, if we were to pick the word apple and end up with no green and
no yellow boxes, that feedback would turn out to eliminate 1,888 words
from the list: every word that uses an a, a p, an l, or an e. If we pick the word
apple and end up with a green l and a yellow e, the feedback this time would
eliminate an even more impressive 2,297 words: every word that uses an
a, every word that uses a p, every word that has a letter other than l in the
fourth position, and every word made without even one e.

BRAVE 2,305 words
CHEAP 2,291 words
FUNNY 1,293 words
WEIRD 2,146 words

E
B VR

F

A E
HC A

NU N
P
Y

E I RW D

If I guess . . . the feedback is . . . which eliminates:If I guess . . . the feedback is . . . which eliminates:

Even random guesses can quickly eliminate large numbers of previously
possible words. The feedback from a guess of brave, for example, makes
clear that 2,305 words in the word bank are not right because those
words would have led to different feedback.

The chart above captures four additional examples, comparing the ran-
dom guesses brave, cheap, funny, and weird against the hypothetical hidden
word great. The promising payoff: nearly every guess eliminates hundreds
of potential words, making the next guess that much easier. This suggests a
plausible Wordle algorithm. We would begin with the full New York Times
list of all eligible Wordle words. The computer would then guess one of
those words at random. Based on the feedback, the computer would elimi-
nate the clear losers and then draw a new random guess from among the
remaining words. The computer would repeat that process again and again
until the hidden word was either proposed as a guess or was the only word
left in the queue. And that would work fine. Indeed, when I tested this
approach, the computer guessed my hidden word lucky in just five tries,
and it guessed my hidden word green in four. I then tested the entire 2,315-
word database, and the random approach was able to identify the hidden

15544_001b.indd 8 12/18/2024 4:14:29 PM

GUESS WRONG ANSWERS 9

word in fewer than five guesses roughly one third of the time, and it needed
fewer than seven guesses for all but 187 words. That’s not genius perfor-
mance, but it’s not bad.

E
O

U

N L B

C

S M

L F
R

O

Y W
I Y

L Y

R

G

O D
R C P

E R E
E
T

K
T Y E

L

AZ
L

Y
R E E G N

When my hidden word was lucky, the computer’s random guesses were,
in order, zonal, slimy, wryly, lefty, and lucky. When my hidden word was
green, the computer guessed brood, then crepe, then greet, then green.

But as we learned from both guess- a- number and Guess Who, computers
do even better when they pick their guesses strategically. To consider how
to be strategic in this context, let’s play the game with an artificially short
list of permissible words so that we can really see what happens as the com-
puter makes different guesses. Thus, instead of using all 2,315 words that
the New York Times itself uses to create its daily puzzle, consider a simplified
version of the game where the hidden word is guaranteed to be one of the
eighteen words listed below.

adept, after, agent, avert, cater, eaten,
eater, extra, hater, taken, taker, water,
great, treat, wheat, taper, tread, tweak

If our first guess is the word adept and the hidden word is also adept, we
will obviously win the game. Assuming that the hidden word is picked at
random, there is a 1- in- 18 chance of that happening. By the same logic,

15544_001b.indd 9 12/18/2024 4:14:30 PM

10 CHAPTER 1

there is a 1- in- 18 chance that the hidden word is after, a 1- in- 18 chance
that it is agent, a 1- in- 18 chance that it is actor, and so on, for all eighteen
words. The chart below captures the feedback we should therefore expect.
For example, if we guess adept and the hidden word is great, treat, or wheat,
the feedback we will receive will be that the e and t are both properly placed
and the a is correct but in the wrong position. There is a 3- in- 18 chance of
that happening— the chance that the hidden word is great, treat, or wheat—
and, if we do get that feedback, in our next guess we would need to distin-
guish between only those three words.

By the same logic, if we guess adept and the hidden word is cater, eaten,
eater, extra, hater, taken, taker, or water, we will see a response indicating that
the a, e, and t are all in the puzzle but in other positions. There are eight
ways that can happen, and, if it does, in our next move we will have to
distinguish between only those eight possible words. The chart below runs
through the full list in this spirit. If we guess adept, these are all the possible
responses we might see, and what those responses mean in terms of how
many words would still be in contention.

adept
after

tread
agent, avert

tweak
cater, eaten, eater, extra

hater, taken, taker, water
taper

great, treat, wheat

A D E P T
A D E P T
A D E P T
A D E P T
A D E P T

A D E P T

A D E P T

A D E P T

If we guess ADEPT We get:when the real word is:
If we guess ADEPT We get:when the real word is:

This chart shows the full range of feedback we might see if we guess
the word adept. Some of the feedback immediately makes clear what the
hidden word must be. Other feedback is less conclusive but still helps to
significantly narrow the list of plausible words.

15544_001b.indd 10 12/18/2024 4:14:30 PM

GUESS WRONG ANSWERS 11

We can make similar charts for all eighteen words in the list. Consider,
for example, a chart focused on the guess extra. If the feedback were to
indicate that the e, t, and a are all used in the hidden word but in other
locations, that would allow us to narrow the list of remaining words to
just five: adept, agent, taken, tweak, and wheat. Were we instead to receive
feedback indicating that the e and t are both correctly placed while the a
is part of the hidden word but located elsewhere, we would immediately
know that the hidden word must be eaten because that is the only word
on the list that satisfies those constraints and does not include either an x
or an r.

If we made all eighteen charts, we could then pick the optimal guess.
Consider the word taken. For adept, the worst outcome we found was feed-
back that left us with eight remaining words. For a guess of taken, by con-
trast, the worst case turns out to be feedback that endorses the use of the
letters t, a, and e, but in other positions, which leaves five words in play:
adept, avert, extra, great, and wheat. If our goal is to minimize our worst case,
taken is thus a better guess than adept because its worst case leaves us with
fewer words. Even better options along these lines are the words after, cater,
eater, hater, taker, taper, and water because, for each of those, the worst case
leaves us with only four possible words.

Instead of focusing on the worst case, we could instead focus on the aver-
age number of words expected to remain after an incorrect guess. For adept,
we had an 8- out- of- 18 chance of being left with eight words, a 3- out- of- 18
chance of being left with three words, a 2- out- of- 18 chance of being left
with two words, and a 4- out- of- 18 chance of being left with just one word.
Adding and multiplying as appropriate, this suggests that we would, on
average, be left with 4.5 words after wrongly guessing adept. Running the
same math for taken tells us that, on average, an incorrect guess of taken will
leave us with 2.83 words to consider. And running this same calculation for
all eighteen words in the list ends up suggesting that our best bets are the
words water and taper because each of those leaves us with an average of
merely 2.17 words for our next guess.

But hold on. Ready for this? Our analysis thus far has only considered
guesses that could turn out to be the actual hidden word. That is, we
have eighteen words in this version of the game and we have only consid-
ered using those eighteen words as possible guesses. But crazy as it might
sound, it is possible that some other word will be an even better guess. For

15544_001b.indd 11 12/18/2024 4:14:30 PM

12 CHAPTER 1

example, consider the word there. Because there is not in our list of eighteen
possible words, there will definitely not be the right answer. However, as
the chart below shows, the worst- case outcome associated with the word
there would be a list of three remaining words, and the average number of
words remaining would be a shockingly low 1.67. This means that there— a
word not in our list of possible answers— is likely a better guess than adept,
taken, or indeed any word in our list, regardless of whether our goal is
to minimize the worst case or to minimize the average number of words
remaining.

This is surprising. An intuitive human player would never guess there
because there is not a possible winning word in this example. But in an
elimination algorithm, part of our goal is to eliminate as many duds as we
can, and so all of a sudden a word like there might well be our best option
even though we know we cannot possibly win the game by guessing that
particular word.

after, cater, water
tweak
avert
eater
eaten
extra
great
hater

adept, agent
taken
wheat

taker, taper
tread, treat

T H E R E
T H E R E
T H E R E
T H E R E
T H E R E
T H E R E
T H E R E
T H E R E
T H E R E
T H E R E
T H E R E
T H E R E
T H E R E

But if we guess THERE . . .
Worst Case

Average？
1.67 words!

But if we guess THERE . . .
Worst Case

Average？
1.67 words!

The word there cannot be the correct answer because it is not listed in the
word bank. As a first guess, however, it turns out to be a fabulous choice
regardless of whether the goal is to minimize the worst case or minimize
the average.

15544_001b.indd 12 12/18/2024 4:14:30 PM

GUESS WRONG ANSWERS 13

CHAPTER CHALLENGE

Your challenge this chapter is to write a Wordle solver
using the elimination algorithm we just explored. To
get you started, this CodeLink will take you to sam-
ple Python code that plays a simple version of the
game. There is an array called WORDLIST that stores a
few thousand permissible five- letter words. There is
a function called HIDEWORD() that randomly chooses
one of the words to be the hidden word; a function called GUESSWORD() that
allows the computer to guess; and a function called SCOREGUESS() that evalu-
ates the guess and provides feedback on the screen. In the sample code, how-
ever, the computer’s guesses are completely random. That is, the computer
randomly chooses a word from the list, guesses it, and, if that word is not
the hidden word, the computer randomly chooses some other word, hav-
ing learned nothing from its prior tries. Your job is to replace this random
function with a function that implements a thoughtful elimination pro-
cess, perhaps based on the average number of words remaining or on worst-
case analysis.

As you code, think about whether there are other improvements you
can make to the algorithm. For example, suppose that guessing the word
mouse would leave the words catch, match, and latch as the remaining pos-
sible choices, whereas guessing the word party would leave the words north,
first, and aargh. In our work thus far, we have treated these two outcomes as
equivalent because in both cases there are three words left to consider. But
catch, match, and latch are worse words than north, first, and aargh because it
is more difficult in the next guess to distinguish between catch, match, and
latch than it would be to distinguish between north, first, and aargh. Is there
a plausible improvement to our algorithm that would account for the fact
that some lists of words are actually easier to evaluate than others?

Lastly, if you enjoy Wordle, consider how you might change the algo-
rithm to play other versions of the game. For instance, in Fibble, the letter-
by- letter feedback includes one lie per round, such that a player might be
told that the letter f is in the right spot when, in fact, f is not used in the
hidden word at all. Or, my favorite Wordle variation: in Absurdle, the secret
word changes from round to round. The new word is always consistent
with the feedback already given, but beyond that the word is chosen to
make things as hard as possible for the guessing player.

1

15544_001b.indd 13 12/18/2024 4:14:30 PM

	15544_000
	15544_000a
	15544_000b
	15544_000c
	15544_000d
	15544_001a
	15544_001b
	15544_002
	15544_003
	15544_004a
	15544_004b
	15544_005
	15544_006
	15544_007a
	15544_007b
	15544_008
	15544_009
	15544_010a
	15544_010b
	15544_011
	15544_012
	15544_013
	15544_014
	15544_444
	15544_555

